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ABSTRACT

A Fortran program was developed to implement a Kalman Filter and Fixed Interval
Smoothing Algorithm to optimally smooth data tracks generated by the short base-line
tracking ranges at the Naval Torpedo Station, Keyport, Washington. The program is
designed to run on a personal computer and requires as input a data file consisting of
X, Y, and Z position coordinates in sequential order. Data files containing the filtered
and smoothed estimates are generated by the program. This algorithm uses a second
order linear model to predict a typical target's dynamics. The program listings are in-
cluded as appendices.

Several runs of the program were performed using actual range data as inputs. Re-
sults indicate that the program effectively reduces random noise, thus providing very
smooth target tracks which closely follow the raw data. Tracks containing data gener-
ated in an overlap region where one array hands off the target to the next array are
highlighted. The effects of varying the magnitude of the excitation matrix Q(k) are also

explored.
This program is seen as a valuable post-data analysis tool for the current tracking

range data. In addition, it can easily be modified to provide improved real time, on line
tracking using the Kalman Filter portion of the algorithm alone.
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I. INTRODUCTION

The short base-line array tracking ranges located near the Naval Torpedo Station
at Keyport, Washington, are used to conduct torpedo testing in support of torpedo de-
velopment projects. The tracking system in use on these ranges consists of a series of

short base-line arrays which can independently track several subsurface targets by re-

laying received signals from each target to a tracking computer. The computer processes
the received array data and calculates target tracks in X,Y,and Z coordinates for display.

The arrays are distributed over the range so that full coverage of the range is achieved,
and as a result there are several regions on the range where the arrays overlap in their

coverage. Figure 1 on page 2 is an illustration of this arrangement [Ref. 1: p. 199].
Handoff is a term used to describe when the tracking information on a target supplied
to the tracking computer is shifted from one array to a neighboring array.

Each short base-line array consists of four omnidirectional hydrophones spaced 30
feet apart on orthogonal booms as shown in Figure 2 on page 3. The four hydrophones

are all connected to a common cable which feeds the received signal from each

hydrophne to the tracking computer. The computer extracts the different times of ar-
rival of the received signals and calculates X,Y, and Z coordinates based on the following

equations:

V2  2

V2 - T - Tx 2) (1.1)

Y= L (Tc 2 - Ty2)

22
1/ (TC2 _ Tz2) (1.3)

where:

V = speed of sound in water,

D = hydrophone separation distance,

Tc = tracking signal travel time from target to hydrophone C,

Tx = tracking signal travel time from target to hydrophone X,

Ty = tracking signal travel time from target to hydrophone Y, and



Y

X

Figure 1. Short Base-line Array Range Configuration - Fig 2 From Ref I.

Tz = tracking signal travel time from target to hydrophone Z.

A more detailed description of the array and derivation of the equations above can be

found in [Ref. 21.

The tracking signal used on these ranges is a 150 watt phase shift keying (PSK) pulse

consisting of 47 bits (19 identification bits and 27 telemetry bits) and lasting approxi-

mately five milliseconds. ]he 0"s and I's making up the bit stream are 180 degrees out

of phase. Correlation processing techniques are used to validate the received signal, thus

improving the signal to noise ratio. [Ref. 3: p. 91

Figures 3 and 4 show examples of a typical track generated by this system.

Figure 3 on page 4 is the track in X vs. Y coordinates generated from data received by

a single array while Figure 4 on page 5 shows the same tracks in X vs. Z coordinates.

It is obvious that these tracks are affected by random noise. Figures 5 and 6 show ex-

amples of a track generated with data from two arrays as would occur in an overlap re-

gion. Again, the X vs. Y coordinates and X vs. Z coordinates format is used. It can

be seen that the data from the different arrays do not agree. This indicates that bias

errors are also present in the current tracking system. Tracking accuracy has been in-

proved by use of the PSK pulse because its sophistication increases the received signal

2



Figure 2. Short Base-line Array Configuration.
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Figure 3. Typical Track Generated By A Single Array (X vs Y).

to noise ratio, but it can be seen from the tracks that a great deal of noise remains. The

question that now arises is how these target tracks can be improved.

While several approaches to improving the tracking accuracy of the short base-line

array ranges are possible, the effort here has been on applying a Kahnan Filter and

Fixed Interval Smoothing Algorithm as a post data analysis tool. Quite a bit of work

has already been done in the area of applying Kalnan Filters to underwater tracking

over the years IRefs. 4, 5, 6, 71. More recent efforts have centered around applying an

optimal smoothing algorithm to the underwater tracking problem [Refs. 8, 91. Most of

this work has involved attempts to filter or smooth the transit times prior to their use

in the tracking equations using an Extended Kalman Filter. In the program developed

in this research, a Kalman Filter utilizing a second order linear model is used to reduce

4
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Figure 4. Typical Track Generated By A Single Array (X vs Z).

tile random noise in the already calculated X, Y, and Z position coordinates. The opti-

mal Fixed Interval Smoothing algorithm is then used to improve the track quality even

further. This method is used because it lends itself more readily to post data analysis.

The program is written in Fortran, compiled using the Microsoft, Inc. 4.01 Optimal

Compiler and run on an IBM-AT personal computer. Details of the program and results

obtained will now be discussed.
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II. KALMAN FILTER

The Kalman Filter is designed to remove random noise from the estimate of the

parameter with which it is concerned by adding a weighted error term to the observed

parameter being estimated. The error term is simply the difference between the filter's
prediction of the parameter and the actual value observed at a particular time. The
weighting factor is influenced by the magnitude of the measurement error and the

covariance of error between the estimate and the observation. The covariance of error

of the estimate is also updated based on previous values of the covariance of error.
Many treatments of the derivation and application of Kalman Filters were found helpful

in preparing this report [Refs. 10, 11, and 12], and the equations used in this application

will now be presented.

The equations shown below were obtained directly from previous work on this sub-
ject [Ref. 9: p. 19]. Their development will not be repeated here as an excellent deriva-

tion of these equations is presented in [Ref. 13: pp. 176-182].

x(k I k) =,(k I k- 1)+ G(k)L(k)- (k I k- 1)] (2.1)

.1(k + I Ik) = .(k I k) (2.2)

Z'(k I k- 1) = HS(k Ik - 1) (2.3)

G(k) = P(k k - J)HT[fHP(k I k - 1)Hr+ RJ -  (2.4)

P(k + I I k) = OP(k I k)&k"+ Q(k) (2.5)

P(k I k) = [I- G(k)-lP(k I k - 1) (2.6)

where:

- state estimate vector,
- observation vector,

H - measurement matrix,

- state transition matrix,

G - Kalman gain matrix,

P - covariance of estimate error matrix,



R - covariance of measurement error matrix,

Q - covariance of excitation error matrix, and

I - identity matrix.

In this application, six states were used; namely, the x, y, and z positons and the

corresponding velocities, ., .,, and z. The model for the system, represented by the state

transition matrix 0, is a second order linear model

1 T 0 0 0 01

0 1 0 0 0 0

0 0 1 T 0 0

0 0 0 1 0 0 (2.7)

0 0 0 0 1 T

0 0 0 0 0 1

which when multiplied by the state matrix .K(k I k) results in the equations of motion

x(k + I) =(k) + (k)T (2.8)

A + A

y(k + 1) =y(k) +y(k)T (2.9)

2(k + 1)=(k)+z (k) T (2.10)

where T represents the time in seconds between samples. Since the parameters being

estimated are already expressed in a linear coordinate system, the measurement matrix

H necessary in this case need only extract the observable states, i.e., x, y, and z. The

measurement matrix used is:

10 000
H= 0 0 1 0 0 (2.11)

-0 0 0 0 1 0

The values of Q(k) and R chosen play an important role in the performance of the

filter. The covariance of excitation error, Q(k), is a measure of how confident the filter

is in the adequacy of the system model together with how strong the noise affecting the

9



actual system is expected to be. A relatively large value of Q(k) results in the filter

placing more emphasis on the observation and less on the predicted value when updating

the estimate, while a smaller value of Q(k) has the opposite effect. Therefore, with a

larger Q(k), the filter output should be noisier but better able to handle disturbances not

related to noise such as, in this case, actual target maneuvers. On the other hand, the

covariance of measurement error R indicates the confidence in the accuracy of the data

measurements made. It turns out that increasing the magnitude of R in effect decreases

the gain resulting in less weight being given to the difference between the predicted esti-

mate and the actually observed value. This results in less attention being paid to the

noise observed, which makes sense if it is assumed that the measured values are less ac-

curate. [Ref. 12: p. 2241

The covariance of excitation error matrix used for this filter application is as follows:

T4W 0 0 0 0 0

0 - 2  0 0 0 0

0 0 TL I 0 0 0,4
Q= (2.12)

0 0 0 T2 W 0 0

0 0 0 0 -7+V 04

o 0 0 0 0 72w

where:

W a= a= = EwwT] (2.13)

A detailed derivation of this matrix is shown in (Ref. 4: pp. 36-421. Since the excitation

errors are assumed to be uncorrelated, only the diagonal terms of this matrix are non-

zero. The value of W is set by the user while running the program. The value of R

chosen is 25 square feet. This is a conservative value based on range accuracy estimates

reported by NUWES [Ref. 3: p. 6].

10



Finally, in initializing the filter, an initial value for the covariance of estimate error

P(k,'k) must be chosen. This value affects the transient response of the filter early on,

but does not affect the steady state response [Ref. 12: p. 2241. For this filter, P(k'k) in-

itially is set at one million square feet. Again, uncorrelated errors were assumed, so, only

the main diagonal terms are non-zero. The initial value of P(k'k) used here was arrived

at mainly through trial and error.

In summary, the Kalman Filter is a linear minimum variance estimator whose out-

put is nothing more than the conditional mean of the parameter being estimated based

on the observations made. A more detailed description of the actual programs can be

found in Appendix A and Appendix B.

This program was run on a typical data file obtained from information provided by

the Keyport Range. Figures 3 and 4 show the raw track in X vs. Y and X vs. Z coor-

dinates respectively. Figure 7 on page 12 shows the Kalman Filter variance of the esti-

mate of the X coordinate of the target's track. It can be seen that the variance settles

quickly to a steady state value of about five square feet. The added uncertainty, intro-

duced by the fact that periodically samples are missed by the range tracking system, is

evident in that the values of P(k'k) do not settle to a constant value, but this uncertainty

is absorbed by the filter and causes no problem in the filter's performance.

Figure 8 on page 13 shows the Kalman filtered track for the coordinates X vs. Y.

Clearly, the filtered track is much smoother than the raw data and follows the raw track

closely after the filter settles out. However, the filter tracks a little low after the target

appears to make a sharp maneuver to its left because the value of Q(k) is small. In other
words, a small value of Q(k) does not allow the filter to follow maneuvers well, and this

raw data set looks like it is maneuvering initially. Figure 9 on page 14 is the same data

as Figure 8 on page 13 except that the Z coordinates are plotted against the X coordi-

nates. This plot does not exhibit the same track off behavior because no maneuvers are

apparent and, in fact, a great deal of noise reduction is shown.

Another run of the program was made using a value of Q(k) increased by % factor

of 100. Figure 10 on page 15 shows the variance of x and, as expected, it follows the

same pattern but settles at a higher "steady state" value of approximately 11 square feet.

Also, the jumps in P(k'k) due to the missed samples are more pronounced. Figure 11

on page 16 is a plot of X vs. Y and, when compared to Figure 8 on page 13, clearly

exhibits the expected behavior. The filtered track is much noisier, but it does not track

off as before. Figure 12 on page 17 displays X vs. Z and again is a noisier track which
follows the raw data more closely.

11
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Figure 7. Kalnan Filter Variance Of X Estimate (Small Q(k)).

The Kalman Filter routine designed for this application provides the user with a fil-

tered set of data points which are an improvement over the actual raw data available in

that, as expected, much of the random noise which tends to corrupt the raw data has

been eliminated. Proper selection of the R and Q(k) matricies and the initial value of

P(k,'k) ensures that the filter is receptive to target maneuvers while at the same time

significantly reducing the random noise. The user must decide on the proper balance to

lit his needs based on known information such as the expected maneuverability of the

target and the magnitude of the expected measurement errors. In addition, this filtered

data is now ready to be processed by the Fixed Interval Smoothing Routine.

12



-2166
x

-2167

-2168
x

-2169

-x XXx -7 x-2170 XX

Z -2171 - Sc x-'x "N xxy)?

XX 'Sc
u'2172 ',

-2173- X x xxx.

X

-2174-

-2175

-2176
2.15 2.2 2.25 2.3 2.35 2.4

DOWNRANGE (FT) x10 4

Figure 8. Kalman Filtered Track - X vs. Y (Small Q(k)).

13



-386

-388

-390
X

x x
xXX

X XXXOOX
x

X XX

XX xx 2  x

x xx ,xT

SXX x

N

x X'X )m X

-396 x
-394 x x x

xex w xx
x (X x x x

x
-396 - x x x

x

-398

-400
2.15 2.2 2.25 2.3 2.35 2.4

DOWNRANGE (FT) x10 4

Figure 9. Kalman Filtered Track - X vs. Z (Small Q(k)).

14



26

24

22

S 20-

X
rl~ 18-
0rz

16-

14

12

101
0 20 40 60 80 100 120 140 160 180 200

DISCRETE TIME INTERVAL

Figure 10. Kalman Filtered Variance Of X Estimate (Large Q(k)).

Is



-2166
x

-2167

X

-2168

x

-2169 x

E- xX
'x'--17O x X X217 x x x x

x x x

Z -2171 - X Nx
X X

4 x xA x x x
En X x x X x

-2172 x x,XXXx ) x x
r.) Xx x

-2173- x X x x
XX

-2174 N

Xx

-2175

-2176,
2.15 2.? 2.25 2.3 2.35 2.4

DOWNRANGE (FT) xlO4

Figure 11. Kalman Filtered Track - X vs. Y (Large Q(k)).

16



-386

-388 x

x

-390 x
x

x x 

S-392- xx x

x x x Nx

x c xx x x xx x x

-3946 x XXxxx x

-398-

-400 I

2.15 2.2 2.25 2.3 2.35 2.4

DOWNRANGE (FT) XI 04

Figure 12. Kalmian lFiltered Track - X vs. Z (Large Q(k)).

17



111. FIXED INTERVAL SMOOTHING ALGORITHM.

The Fixed Interval Smoothing Algorithm is one of the three algorithms designed to
improve upon the Kalman Filter's results by taking into account data which was not

available when each Kalman Filter estimate was made and updating each previous esti-

mate accordingly. The Fixed Point and Fixed Lag Smoothing algorithms, while very
similar to the Fixed Interval Smoothing routine, differ in the way they include this ad-
ditional data into each estimate. The Fixed Interval Smoothing algorithm recalculates

each estimate generated by its associated Kalman Filter based on information obtained
over the entire interval of data being analyzed. In this sense, it is useful only as a post

data analysis tool. since the entire set of data over the given interval must be known, and

Kalman Filter estimates and covariance of error between estimates and observations
must be generated previously. In implementing this algorithm, a system of recursive

equations which operate backwards in time from the last data point to the first data

point are used.

The equations for the Fixed Interval Smoothing algorithm used in this application
were obtained from [Ref. 9: p. 20]. Several sources were beneficial in understanding

these equations [Refs. 10, 11, and 14 J and [Ref. 13: pp. 216-225] provides an excellent

derivation of ther:. Therefore. these derivations will not be repeated here. The

equations of interest are:

.s(k I A)3 = ,(k I k) + A(k)[I(k + I I A) - ,(k + I I k)] (3.1)

A(k) = P(k I k) ' P(k + 1 I k)- ' (3.2)

P(k I N) = P(k I A) + A(k)CP(A + I I N) - P(k + I I k)]A(k)r  (3.3)

where:

j(k N) - smoothed estimate at sample k,

P(k I N) -smoothed covariance of estimate error at sample k,

A(k) - smoothing algorithm gain matrix, and

ai(k I k) and P(k I k) - values stored by the Kalman Filter routine.

It can be seen from the above equations that the estimate generated by the Fixed
Interval Smoothing algorithm is simply the Kalman Filter estimate adjusted by a

18



weighted error term. The error term is the difference between the smoothed estimate
calculated for the previous data point (which is actually the next sequential data point
in the file in real time), and the predicted value of the corresponding parameter gener-
ated by the Kalman Filter. The gain matrix A(k) is dependent on the covariance oferror

between estimate and observation generated by the Kalman Filter, namely, P(k,'k) and

P(k+ Ik). The smoothed value of the covariance of error P(k/N), while having no im-
pact on the smoothed estimate .(k I N) , provides a measure of how well the smoothing
filter is working. In general, P(k,'N) should be less than P(k'k) except at the Nth point
where they should equal one another. As the smoothing filter moves backward in time,

it adjusts the original Kalman Filter estimate depending on the smoothed estimate's
agreement with the predicted value for the previous point operated on, and on the con-
fidence level of the Kalman Filter in its own solution as indicated by the values of P(k k)

and P(k + 1 k). Simply stated, if more uncertainty exists in the Kalman Filter Solution,
more weight is given to the difference between previous smoothed estimates and pre-

dicted values of the parameter in computing the current smoothed estimate.

The Fixed Interval Smoothing portion of the program listed in Appendix A imple-
ments the equations shown above. As with the Kalman Filter portion of the program
described in the previous chapter. there is no provision for the resultant data to be dis-
played graphically by this program itself because the size of the data files involved ex-
ceeds the capabilities of the plotting routines available. However, graphical results are
easily obtained from the data files output by the program using Matlab. Details of
Matlab plotting capabilities and descriptions of the commands used to generate the plots
shown can be found in [Ref. 151.

Results of the smoothing algorithm were obtained using the Kalman Filter results

presented in the previous chapter as inputs to the smoothing loop of the program. As

in chapter 2, data is presented in the X vs. Y plane and the X vs. Z plane, and cases were

run for both values of Q(k).

Figure 13 on page 20 shows the variance of the x estimate associated with the

smoothing routinc together with the variance of x achieved with the Kalman Filter. As

expected, the value of the smoothed variance is a definite improvement over the Kalman

Filter result, and in fact settles to an average value that is less than 1.5 square feet.

Figure 14 on page 21 is the smoothed version of Figure 8 superimposed on the raw X

vs. Y track for the case where Q(k) is small and shows a smooth track vhich follows the

raw track closely. The divergence seen initially in the filtered results for this case has

been compensated for, however, a close look at the smoothed results shows some di-
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Figure 13. Kalman Filtered & Smoothed Variances Of X (Small Q(k)).

vergence still present in the first portion of the track. Figure 15 on page 22 is the

smoothed version of Figure 9 superimposed on its raw data, and again a significant im-

provement is demonstrated.

The Kalman Filter results of the case where a large Q(k) was used were also treated

with the smoothing algorithm. Figure 16 on page 23 is the smoothed plot of the vari-

ance of the x estimate together with the variance of x shown in Figure 10. This plot

indicates that the output is much more influenced by noise and sample uncertainty due

to the higher sensitivity when compared to the small Q(k) case, but is a great improve-

ment over the Kalman Filter output. Here the variance settles to an average value of
approximately five square feet. Figure 17 on page 24 shows the smoothed version of

Figure I I superimposed on its raw track. This smoothed track greatly improves on the
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Figure 14. Rawv & Smoothed Tracks - X vs. Y (Small Q(k)).

filtered track while showing none of the divergence from the raw track which was seen

in the small Q(k) case. Figure 18 on page 25 is the raw and smoothed X vs. Z tracks

for the large Q(k) case and, when compared to the Kalman Filter results shown in Figure

12, clearly illustrates the excellent performance of the smoothing routine.

These results show that the smoothing algorithm dramatically improves upon the

results obtained with the Kalnan Filter alone. This intuitively makes sense because the

estimates are now based on the behavior of the entire data set instead of on just what

is known about the data at the time the estimate is made. The smoothed results depend

indirectly upon th2 values chosen for Q(k) and P(k/k) initially and can even compensate

somewhat flor poor choices of the parameters in the initialization of the Kalman Filter.
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Figure 15. Raw & Smloothed Tracks - X vs. Z (Small Q(k).

These results demonstrate that thle Kahnan Filter Smoothing Algorithm employed here

is an excellent post-data analysis tool.
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Figure 16. Kalman Filtered & Smoothed Variances Of X (Large Q(k)).
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Figure 17. Raw & Smoothed Tracks - X vs. Y (Large Q(k)).
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IV. SOLVING THE ARRAY HANDOFF PROBLEM.

As discussed in the introduction, one of the major problems with the tracks gener-

ated by the current Keyport short base-line tracking array system is the presence of

discontinuities in array overlap regions. These discontinuities in the target track caused

by differing bias errors present in each array's solution complicate the post data analysis

so crucial to torpedo testing and evaluation. It can now be demonstrated that the Fixed

Interval Smoothing Kalman Filter Algorithm, as implemented by the program presented

here, can improve the overall track quality immensely in the overlap regions.

As shown in previous chapters, the Kalman Filter and Fixed Interval Smoothing

routines effectively remove random noise from the generated track data and generate

smooth tracks which are easy to see. The processing of track data from two arrays

where many sample times have two different values simultaneously is handled quite

satisfactorily by the algorithms. The data is treated simply as two distinct samples where

no time has elapsed between samples. This overlap data is also characterized by the fact

that many samples are missed and occasionally relatively long periods of time pass be-

tween data points. It will be seen that this problem is also handled adequately by the

algorithms. Another problem experienced with these data sets was that they were too

large to be handled by the personal computer's compiler. This problem was solved by

switching to the Microsoft, Inc. 4.01 Optimizing Compiler. This compiler not only

compiled the program using less memory, but use of the SLARGE metacommand al-

lowed the larger data sets to be processed. Detailed descriptions of this compiler and the

available memory models can be found in [Ref. 16]. Two sets of overlap data were an-

alyzed and the results of this analysis are now presented.

Figure 19 on page 27 is a plot of the Kalman Filter variance of the x coordinate

estimate vs. time, together with the smoothed variance of the x estimate for the first set

of overlap data processed. It is seen that the filtered variance drops quickly to a steady

state value of about 6.5 square feet, and then jumps back up erratically over the last

third of the set. The thick portion of the filter's variance is where overlap is occurring

because here two values of the parameter are available for each time, so, two steady state

values of the variance of the estimate are consistently reached. The erratic values of the

filter's variance result from the fact that over this region the sample interval varies er-

ratically as samples were missed, so, the uncertainty of the filter is also affected. The
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Figure 19. Kalnan Filtered & Smoothed Variances Of X (Arrays 1 & 11).

smoothing algorithm's variance of the x estimate is, as expected, a significant improve-

ment over the filter's performance alone. Note that the overlap region now settles to a

single steady state variance of about 2.5 square feet, and that, although the variance

jumps up over the latter portion of the data set as before, the values are again much

smaller than the filtered result. Figure 20 on page 28 displays the Kalman filtered track

of the data shown in Figure 5 for the X vs. Y coordinates case. The filtered track over-

shoots the raw track initially, indicating that better tuning may be required as discussed

earlier, but then settles to an average of the two distinct array tracks throughout the

overlap region. Finally, the filtered track closely follows the track after the overlap re-

gion has ended while effectively removing much of the random noise present.

Figure 21 on page 29 is the smoothed version of Figure 20 on page 28, and proves to
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Figure 20. Kalnan Filtered Track - X vs. Y (Arrays I & I1).

be an easy-to-see track which does not overshoot the target's maneuver. Thus, the

smoothing routine has not only smoothed the filtered track considerably, but it has also

compensated for the possible tuning problem. Figure 22 on page 30 is the smoothed

track superimposed on the raw data, and it shows this clearly. Figure 23 on page 31 and

Figure 24 on page 32 show the filtered and smoothed tracks respectively for the X vs.

Z case. These plots exhibit the same characteristics as the X vs. Y plots discussed above

as expected. Figure 25 on page 33 highlights the overall improvement gained by

smoothing the raw data.

Another set of data which contained an overlap region was processed by the pro-

gram. This data set was considerably larger than the previous case but was still within

the capacity of the personal computer. This data is illustrated in Figure 26 on page 34
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Figure 21. Smoothed Track - X vs. Y (Arrays I & 11).

and Figure 27 on page 35. Figure 28 on page 36 displays the filtered and smoothed

values of the x estimate variances vs. time. As in the previous case, the nlissed samples

a. d overlap region are apparent from the filtered results, and the smoothed results show

muii improvement. Figure 29 on page 37 shows the filtered results while Figure 30 on

page ::8 shows the smoothed results of the X vs. Y tracks for the arrays 2 & 12 overlap

region, and it is clearly illustrated that the track quality is again vastly improved.

Figure 31 on page 39 is the smoothed X vs. Y track superimposed on the raw data

demonstratinZ that the smoothed data does indeed follow the raw data closely.

Figure 32 on I.age 40 and Figure 33 on page 41 show the filtered and smoothed X vs.

Z plots respectively with equally good results. Finally, Figure 34 on page 42 is also in-

cluded to highlight the final results of the program. Notice that there is no overshoot
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Figure 22. Rawv & Smoothed Tracks - X vs. Y (Arrays 1 & 11).

in these filtered tracks as was sec'ti in the previous case, indicating that tile Kalman Filter

was properly tuned for this run.

These results clearly demonstrate that the Kalman Filter with the Fixed Interval

Smoothing Algorithm will essentially "solve" the array handoff problem by removing

random noise and taking on a single average value through overlap regions based on

information obtained from all hydrophones in question. The program effectively han-

dles nissed points and samples with multiple data especially where the the smoothed

output is considered. Tlherefore, with sufficient computer memory available, this pro-

gram could accept a target's entire range track file filled with missed samples and over-

lapping data regions and produce the optimum track for the known inlormation. Tlhis
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Figure 23. Kalinan Filtered Track - X vs. Z (Arrays I & 11).

fact makes this an extremely useflul post-data analysis tool for evaluating typical range

generated tracks.
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Figure 24. Smoothed Track - X vs. Z (Arrays 1 & 11)
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Figure 25. Raw & Smoothed Tracks - X vs. Z (Arrays I & I1).
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Figure 26. Ra Track - X vs. Y (Arrays 2 & 12).
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Figure 27. Raw Track - X vs. Z (Arrays 2 & 12).
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Figure 28. Kalman Filtered & Smoothed Variances Of X (Arrays 2 & 12).
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Figure 29. Kalman Filtered Track - X vs. V (Arrays 2 & 12).
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Figure 30. Smoothed Track - X vs. Y (Arrays 2 & 12).
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Figure 31. Raw & Smoothed Tracks - X vs. Y (Arrays 2 & 12).
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Figure 32. Kalman Filtered Track - X vs. Z (Arrays 2 & 12).
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Figure 33. Smoothed Track - X vs. Z (Arrays 2 & 12).
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V. CONCLUSION

The results above have demonstrated the effectiveness of this Kalman Filter Fixed

Interval Smoothing Algorithm in smoothing a target track for use in post-data analysis.

A raw target track characterized by discontinuities in array overlap regions and random

noise throughout can easily be transformed into the optimal track given the known in-

formation. All the user need do is set up an appropriate input file consisting of sample

count and X, Y, and Z coordinates. The program listed in Appendix B is designed to

take current data files from the Keyport Torpedo Station and reformat them into suit-

able input files for the main smoothing program using data from any two arrays. This

program could easily be modified to include data from as many arrays as desired. Thus,

the original goal of this research, to provide a smoothing algorithm tested on actual

range data which effectively deals with the array handoff problem, has been successfully

achieved. In addition, this algorithm's success suggests some other interesting possibil-

ities for improving short base-line array tracking range capabilities.

Another possible use for this algorithm is range calibration. As has been discussed,

the current tracks generated by the short base-line arrays contain random errors and bias

errors due to a myriad of sources. If a test craft could be tracked accurately independent

of the acoustic range, it could be used to generate a true track for comparison to the

smoothed track produced by this program. It follows that since the Kalman Filter

Smoothing routine effectively reduces random errors while having no effect on bias er-

rors, any bias errors present in the smoothed track would be highlighted; whereas, they

may have been lost before in the random noise. These bias errors could then be ac-

counted for in the software that calculates the target's position. Calibration runs could

be made as frequently as desired, and in this way, bias errors could be promptly and

easily compensated for.

The Kalman Filter portion of the program presented here is designed to operate on

a file of existing data points. However, it would be a relatively simple matter to alter this

program to read one data point, operate on the data, generate a filtered data point, and

store the required information for use in the smoothing portion of the program. The

smoothing routine in this program is desired to run after all the data has been Kalman

filtered, so, no changes are required in this portion of the program as long as the last

data point of the track is properly flagged. The implications of these facts is that this
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program could be used to improve the real time tracks generated by the range as well
as providing a smoothed track after the run is complete for post-data analysis and range
calibration. The program need only be given the computed output of the tracking
computer and then allowed to supply its filtered result to the algorithm which generates
the track displays. Furthermore, improved tracking accuracy could be obtained using
an adaptive excitation matrix scheme. It was shown earlier how Q(k) can affect the fil-
tered results. Assuming frequency information could be provided to the program in real
time, the magnitude of Q(k) could be altered in response to doppler shifts in received

frequency. In other words, if a target maneuver is indicated by a doppler shift, the
magnitude of Q(k) is increased to allow the filter to track through the maneuver. Once
the doppler information indicates that the target is no longer maneuvering, Q(k) is de-
creased to smooth out the filtered track. In this way, the current real time tracking ca-
pabilities of these ranges could be improved with a reasonable amount of changes in the
tracking software required.

In conclusion, the approach used here of Kalman Filtering the target's computed
position in X, Y, and Z coordinates is considered to be successful. This method is an
effective compromise between the theory of optimal linear estimation and the opera-
tionally oriented user who may be leery of trusting massaged data, because the raw data
is not lost. Therefore, the user can always make comparisons between raw and treated
data. In addition, this program is seen as flexible enough to be applied to a number of
possible applications concerning the existing short base-line array tracking ranges.
Finally, it is an excellent post-data analysis tool in its present form.
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APPENDIX A. KALMAN FILTER FIXED INTERVAL SMOOTHING

ALGORITHM

A. MAIN PROGRAM

A brief description of the main program and subroutines is given. Initially, the
program reads in data from a user-specified data file and sets a point counter represented

by the variable IRI. After initialization of the necessary variables, the program deter-

mines the time slot to the next sequential data point in the file and converts it to seconds
for use by the subroutine which calculates the state transition matrix 0. Next, the

excitation matrix Q(k) is computed. Notice that this calculation requires the time

elapsed from the last sample. The gain matrix G(k) is then computed followed by the

filtered estimates of the states. The program then stores the filtered estimates along with

the information needed for the smoothing algorithm, and then initializes the array for

later storage of the smoothed estimates. The variance of the x estimate is sent to a

subroutine to be placed in a data file.

The Fixed Interval Smoothing portion of the program first sets up its loop counter

to count back from the filtered loop endpoint. Next, 0 is recomputed using times be-
tween samples that are consistent with the Kalman Filter case. Pertinent information

stored in the Kalman Filter loop is recovered, and the smoothed estimates are then

solved for. The smoothed x estimate variance is then sent to a subroutine which includes

it in an output file, and finally, the filtered and smoothed estimates are written to output

data files.

B. SUBROUTINES

" PLOTPKKS
outputs the variance of the x estimate vs. discrete time interval for the Kalman

Filtered case and the Smoothed case

* PHIDEL
computes the state transition matrix based on time between samples using a

linear second order model

" GAIN
computes P(k,'k-I),P(kk), and the gain matrix G(k)

" ADD
adds two input matrices

"SUB
subtracts second input matrix from first
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" PROD
multiplies two input matrices

* TRANS
calculates the transpose of the matrix input

" RECIP
algorithm taken from [Ref. 17: p. 163] which inverts the input matrix

" INITS
initializes matrices at the beginning of the main program

" CHANGE
allows user to change the magnitude of the excitation matrix Q(k) and the ini-

tial value of the estimate's covariance of error matrix P(k,'k)

$LARGE
C--- KALMAN FILTER--- KALMAN SMOOTHING ALGORITHM--------------
C--- THIS PROGRAM IS DESIGNED TO PROCESS 3/D DATA FILES FROM
C--- THE UNDERSEA TRACKING RANGE AT KEYPORT, WA. A KALMAN FILTER
C---IS APPLIED TO THE TRACK DATA WHICH CONSISTS OF X,Y, AND Z
C---COORDINATES. THEN, A KALMAN FILTER SMOOTHING ROUTINE GENERATES
C---SMOOTHED POINTS IN X,Y, AND Z. THE PROGRAM GENERATES OUTPUT
C--- FILES WHICH CONTAIN THE VARIANCE OF THE X ESTIMATE VS DISCRETE TIME
C--- FOR BOTH THE FORWARD KALMAN FILTER CASE AND THE KALMAN SMOOTHED
C--- CASE. FILES ARE ALSO GENERATED WHICH CONTAIN THE FILTERED
C---X,Y,AND Z ESTIMATES AND THE SMOOTHED X,Y,AND Z ESTIMATES.
C--- THIS PROGRAM IS DESIGNED TO RUN ON THE IBM/AT PERSONAL
C---COMPUTER BUT DUE TO THE SIZE OF THE DATA SETS INVOLVED, PLOTTING
C--- CANNOT BE DONE WITH THIS PROGRAM. PLOTTING OF OUTPUT DATA IS
C--- DONE USING MATLAB. THE PROGRAM GIVES THE USER THE OPTION OF
C--- CHANGING THE VALUE OF THE INITIAL COVARIANCE MATRIX AND THE
C--- EXCITATION PROCESS VECTOR. THE USER IS ALSO REQUIRED TO PROVIDE
C--- THE NAMES OF THE INPUT AND OUTPUT DATA FILES.
C
C ***- DECLARATION OF VARIABLES w
C

COMMON W(6,6),XKK(6),PHI(6,6),Q(6,6),XKKM1(6),
A(6,6),B(6,6),H(6,6),HI(6,6),PKKMI(6,6),PKK(6,6)

COMMON /CBLK/ RAW(3,1000),FILT(3,1000),SMOOTH(3,1000) ,PTC(1000),
* XYRANGE( 3,2),PKKONEONE( 1000), IRI
CHARACTER INFIL*13, FILTER*13, OUTFIL*13
DIMENSION R(6,6),G(6,6),XRR(1000),YRR(1000),ZRR(1000),PHIT(6,6),

*ZZ(6),E(6),GE(6),PKKS3D(6,6,1000),PKKMIS(6,6,1000),XKKS(6,1000),
*C(2,2) ,D(2,2) ,PKKS(6,6),P2(6,6),PNNM1(6,6),ZKKM1(6) ,AKT(6,6),
*SS3(6,6), SS3R(6,6) ,AK(6,6),XNNM1(6), SS2(6) ,XP1(6),TEMP4(6,6),
*TEMP5(6,6),TEMP6(6,6),TEMP3(6,6),TEMP2(6),TEMPI(6,6),TMP(6)

C
C ** INPUT DATA, DESIGNATE FILENAMES *
C

WRITE(* *) 'ENTER NAME OF INPUT DATA FILE'
READ(*, (A)') INFIL
WRITE(*,*) 'ENTER NAME OF FILTERED DATA FILE'
READ(*, (A)') FILTER
WRITE(*,*) 'ENTER NAME OF SMOOTHED DATA FILE'
READ(* , (A)') OUTFIL
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OPEN(1,FILE= INFIL,STATUS= 'OLD')
OPEN(2,FILE= FILTERSTATUS= 'NEW')
OPEN(3,FILE= OUTFILSTATUS= 'NEW')
IR1=1

15 READ(1,*,END=20)PTC(IRI),XRR(IRI),YRR(IRI),ZRR(IRI)
IR1=IR1+1
GOTO 15

20 CONTINUE
IR1 = IR1 - 1

C
C **** INITIALIZE VARIABLES AND DATA ARRAYS ****
C

L= 1
M 3
N 6MD 6
ND= 6
LD= 6
DT 0.
K= 0
W(1,1) = .0001
R(1,1) = 25
R(2,2) = 25
R(3,3) = 25
R(4,4) = 25
R(5,5) = 25
R(6,6) = 25
CALL INITS

C
C CHECK INITIAL PARAMETERS ****
C

CALL CHANGE(W,PKKM1)
C
C
C KALMAN FILTER ROUTINE
C
C

100 K = K + 1
C
C **** GENERATE PHI AND Q MATRICES ****
C

IF (K .EQ. IRi) THEN
DT = 2. 666

ELSE
DT = 1.333*(PTC(K+I) - PTC(K))

END IF
CALL PHIDEL(DT,N,A,PHI)
IF (K .EQ. 1) THEN
DT = 2. 666

ELSE
DT = 1.333*(PTC(K)- PTC(K-1))

END IF
Q(1,1) = (DT*4/4) * W(1,1)
Q(2,2) = DT**2 * W(1,1)
Q(3,3) = Q(1,1)
Q(4,4) - Q(2,2)
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Q(5,5) = Q(111)
Q(6,6) = Q(2,2)
RAW(1,K) = XRR(K)
RAW(2,K) = YRR(K)
RAW(3,K) = ZRR(K)

C
C ** CALCULATE GAIN MATRIX AND SOLVE FOR
C ***X(K/K) = X(K/K-1) + G(K)*[Z(K) - Z(K/K-1)]
C ***WHERE Z(K) IS THE OBSERVABLE
C

CALL GAIN(PKK,PKKM1,Q,R,PHI,H,N,G,HI,ND,MD,LD)
CALL PROD(PHI,XKK,N,N,1,XKKM1,ND,MD,LD)
CALL PROD(H,XKKM1,N,N,1,ZKKN1l,ND,MD,MD)
ZZ( 1)=XRR(K)
ZZ( 2)=YRR(K)
ZZ(3)=ZRR(K)
CALL SUB(ZZ,ZKKM1,M,1,E,ND,MD)
CALL PROD(G,E,N,M,1,GE,ND,MD,LD)
CALL ADD(XKKM1,GE,N,1,XKK,ND,MD)

C
C STORE X(K/K),P(K/K),P(K/K-1),INITIALIZE THE SMOOTHED **
C ***DATA ARRAY, AND STORE THE FILTERED ESTIMATES.
C

DO 40 I1 1,6
DO 40 J =1,6

PKKS3D(I,J,K) = PKK(I,J)
40 PKKM1S(I,J,K) = PKKM1(I,J)

DO 50 I=1,6
50 XKKS(I,K) = XKK(I)

DO 60 I = 1,3
FILT(I,K) = XKK(2*I-1)

60 SMOOTH(I,K) =FILT(I,K)
PKKONEONE(K) =PKKS3D(1,1,K)
IF (K. LT. IRi) GOTO 100
CT =1
CALL PLOTPKKS(CT)

C
C
C KALMAN SMOOTHING ROUTINE
C

DO 600 K=1,IR1 - 1
K1= IRi - K

C
C ***GENERATE PHI MATRIX AND RETRIEVE STORED X(K/K),
C P(K,K), AND P(K+1/K)
C

DT = 1.333*(PTC(KI+1) - PTC(KI))
CALL PHIDEL(DT,N,A,PHI)
DO 501 I = 1,6

XP1(I) = XKKS(I,KI)
501 CONTINUE

DO 502 I = 1,6
DO 502 J = 1,6

P2(I,J) =PKKS3D(I,J,KI)
SS3(I,J) =PKKM1S(I.,J,KI)
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502 CONTINUE
C
C SOLVE FOR SMOOTHED ESTIMATE
C ***X(K/N) = X(K/K) + A(K)*[X(K+1/N) - X(K+1/K)]
C

CALL TRANS(PHI,N,N,PHIT,ND,MD)
CALL RECIP(SS3,SS3R,N)
CALL PROD(PHIT,SS3R,N,N,N,TEMP1,ND,MD,LD)
CALL PROD(P2,TEMPI,N,N,N,AK,NDMD,MD)
DO 504 I1 1,6
XNNM1(I) XKKS(I,KI+1)

504 CONTINUE
CALL PROD(PHI,XP1,NN,L,SS2,ND,MD,L)
CALL SUB(XNNM1,SS2,N,1,TEMP2,ND,L)
CALL PROD(AK,TEMP2,N,N,1,TEMP3,ND,MD,L)
CALL ADD(XP1,TEMP3,N,1,TMP,ND,MD)
DO 505 I = 1,6

505 XKKS(I,KI) = TMP(I)
DO 506 I1 1,6
DO 506 J 1,6
PNNM1(I,J) = PKKS3D(I,J,KI+l)

506 CONTINUE
CALL SUB(PNNM1,SS3,N,6,TEMP4,ND,MD)
CALL TRANS(AK,N,N,AKT,ND,MD)
CALL PROD(TEMP4,AKT,N,N,N,TEMP5,ND,MD,MD)
CALL PROD(AK,TEMP5,N,N,6,TEMP6,ND,MD,MD)
CALL ADD(P2,TEMP6,N,6,PKKS,ND,MD)
DO 508 I1 1,6
DO 508 J =1,6

508 PKKS3D(I,J,KI) = PKKS(I,J)
C

*** STORE X(K/K),P(K/K),AND OUTPUT SMOOTHED DATA **

C
DO 520 I = 1,3

520 SMOOTH(I,KI) = XKKS(2*I-1,KI)
PKKONEONE(KI) = PKKS3D(1,1,KI)

600 CONTINUE
CT = 0
CALL PLOTPKKS(CT)
DO 650 K = 1,IR1
WRITE(2,*)(FILT(I,K) ,I1,3)
WRITE(3,*)(SMOOTH(I,K) ,I1,3)

650 CONTINUE
END

C
C
C
C SUBPROUTINE WHICH OUTPUTS THE VARIANCE OF THE X ESTIMATE VS
C DISCRETE TIME FOR BOTH THE FILTERED CASE AND THE SMOOTHED CASE
C
C

SUBROUTINE PLOTPKKS( CT)
COMMON /CBLK/ RAW(3,1000).,FILT(3,1000),SMOOTH(3,1000),PTC(1000),
*XYRANGE(3,2) ,PKKONEONE( 1000) ,IR1
DIMENSION TK( 1000)
CHARACTER FWDVAR3*13, BKVAR*13
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IF (CT .EQ. 1) THEN
WRITE(*,*) 'ENTER NAME OF FILTERED VARIANCE FILE'
READ(*, (A)') FWDVAR
OPEN(4,FILE= FWDVAR, STATUS= 'NEW')

ELSE
WRITE(* *) 'ENTER NAME OF SMOOTHED VARIANCE FILE'
READ(*, (A)') BKVAR
OPEN(5,FILE= BKVAR, STATUS= 'NEW')

END IF
DO 10 I=1,IR1

TK( I)=PTC(I)-PTC( 1)
IF (CT .EQ. 1) THEN
WRITE(4,*)TK(I),PKKONEONE(I)

ELSE
WRITE(5,*)TK(I),PKKONEONE(I)

END IF
10 CONTINUE

RETURN
END

C
C
C SUBROUTINE WHICH COMPUTES THE PHI MATRIX
C PHI = I + A*T
C
C

SUBROUTINE PHIDEL(T,N,A,PHI)
DIMENSION A(6,6),PHI(6,6),COR(6,6),C(6,6)
F=1.
DO 100 IR = 1,N
DO 100 IC = 1,N
PHI(IR,IC) = 0.
PHI(IR,IR) = 1.

100 C(IR,IC) = A(IR,IC)
110 DO 120 IR = 1,N

DO 120 IC = 1,N
COR(IR,IC) = T/F*C(IR,IC)

120 PHI(IR,IC) = PHI(IR,IC)+COR(IR,IC)
RETURN
END

C
C *
C THIS SUBROUTINE COMPUTES THE OPTIMUM GAIN MATRIX G(K) AND
C THE COVARIANCE MATRIX P(K+1/K) BASED ON THE EQUATIONS:
C
C G(K) = P(K/K-1)*TRANS'H(K) *INV[H(K)*P(K/K-)*TRANS°H(K) + R]
C
C P(K/K+1) = PHI*P(K/K)*TRANSOPHI + Q(K)
C ...... .............** ****

C
SUBROUTINE GAIN(PKK,PKKM1,Q,R,PHI,H,N,G,HI,ND,MD,LD)
DIMENSION PKK(6,6),Q(6,6),H(6,6),G(6,6),R(6,6),C(6,6),D(6,6),

* HI(6,6),HT(6,6),TEMP(6,6),TEMP1(6,6),TEMP2(6,6),
* PHI(6,6),PHIT(6,6),PKKM1(6,6),TEMP3(6,6),TEMP4(6,6)
CALL TRANS(H,N,N,HT,ND,MD)
CALL PROD(PKKM1,HT,N,N,N,TEMP,ND,MD,LD)
CALL PROD(H,TEMP,N,N,N,TEMP1,ND,MD,LD)
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DO 140 1=1,N
DO 140 J=1,N

140 TEMP3(I,J)=TEMP1(I,J)
TEMP3( 1, )-TEMP1( 1, 1)+R(1, 1)
TEMP3(2,2)-TEnP1(2,2)+R(2,2)
TEMP3(3, 3)-TEMP1( 3, 3)+R( 3, 3)
TEMP3(4,4)-TEMP1(4,4)+R(4,4)
TEMP3(5,5)-TEMP1(5 ,5)+R(5 ,5)
TEMP3(6,6)-TEMP1(6,6)+R(6,6)
DO 143 1=1,N
DO 143 J1-,N

143 C(I,J)=TEMP3(I,J)
CALL RECIP(C,D,N)

170 CALL PROD(TEMP,D,N,N,N,G,ND,MD,LD)
CALL PROD(G,H,N,N,N,TEMP,ND,MD,LD)
DO 180 I = 1,6
DO 180 J = 1,6

180 TEMP(I,J) = -TEMP(I,J)
CALL ADD(HI,TEMP,N,N,TEMP,ND,MD)
CALL PROD(TEMP,PKKM1,N,N,N,PKK,ND,MD,LD)
CALL TRANS(PHI,N,N,PI{IT,ND,MD)
CALL PROD(PKK,PHIT,N,N,N,TEMP,ND,MD,LD)
CALL PROD(PHI,TEMP,N,N,N,TEMP1,ND,ID,LD)
CALL ADD(TEMP1,Q,N,N,PKKM1,ND,MD)
RETURN
END

C
C
C SUBROUTINE WHICH ADDS TWO INPUT MATRICES
C
C

SUBROUTINE ADD(A,B,N,M,C,ND,MD)
DIMENSION A(ND,MD),B(NU,MD),C(ND,MD)
DO 100 I1 1,N
DO 100 J =1,M

00 C(I,J) =A(I,J) + B(I,J)
RETURN
END

C
C
C SUBROUTINE WHICH SUBTRACTS THE SECOND INPUT MATRIX FROM THE FIRST
C ******************~**************

C
SUBROUTINE SUB(A,B,N,M,C,ND,MD)
DIMENSION A(ND,MD) ,B(ND,MD) ,C(ND,MD)
DO 100 I1 1,N
DO 100 J =1,M

100 C(I,J) =A(I,J) - B(I,J)
RETURN
END

C
C
C SUBROUTINE WHICH MULTIPLIES TWO INPUT MATRICES
C*************************
C

SUBROUTINE PROD(A,B,N,M,L,C,ND,MD,LD)
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DIMENSION A(ND,IID) ,B(MD,LD) ,C(ND,LD)
DO 100 I = 1,N
DO 100 J = 1,L

100 C(I,J) = 0.
DO 110 I = 1,N
DO 110 J = 1,L
DO 110 K = 1,M

110 C(I,J) -C(I,J) + A(I,K)*B(K,J)
RETURN
END

C

C SUBROUTINE WHICH COMPUTES THE TRANSPOSE OF THE INPUT MATRIX

C
SUBROUTINE TRANS(A,N,M,C,ND,MD)
DIMENSION A(ND,MD) ,C(MD,ND)
DO 100 1 1,,N
DO 100 J =1,M

100 C(J,I) =A(I,J)
RETURN
END

C
C .. . .

C SUBROUTINE WHICH CALCULATES THE RECIPROCAL OF THE INPUT MATRIX
C
C

SUBROUTINE RECIP(A,C,N)
DIMENSION A(N,N),C(N,N),D(20,20)
DO 100 I1 1,N
DO 100 J 1,N

100 D(I,J) A(I,J)
DO 115 I1 1,N
DO 115 J =N+1,2*N

115 D(I,J) =0.0

DO 120 I = 1,N
J =I + N

120 D(I,J) = 1.0
DO 240 K =1,N
M K+ 1
IF (K -EQ. N) GOTO 180
L K
DO 140 I = M,N

140 IF (ABS(D(I,K)) .GT. ABS(D(L,K))) L =I
IF (L .EQ. K) GOTO 180
DO 160 J = K,2*N

TEMP = D(K,J)
D(K,J) = D(L,J)

160 D(L,J) = TEMP
180 DO 185 J = M,2*N
185 D(K,J) = D(K,J)/D(K,K)

IF (K .EQ. 1) GOTO 220
Ml = K - 1
DO 200 I = 1,M1

DO 200 J = M,2*N
200 D(I,J) = D(I,J) - D(IK)*D(K,J)
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IF (K .EQ. N) GOTO 260
220 DO 240 I =M,N

DO 240 J = M,2*N
240 DCI,J) = D(I,J) - D(I,K)*D(K,J)
260 DO 265 I1 1,N

DO 265 J =1,N
K J +N

265 C(I,J) =D(I,K)
RETURN

* END
C
C
C SUBROUTINE WHICH INITIALIZES SEVERAL MATRICES
C ............~

C
SUBROUTINE INITS
COMMON W(6,6),XKK(6),PHI(6,6),Q(6,6)XKKM1(6),
*A(6,6), B(6,6), H(6,6), HI(6,6), PKKM1(6,6),PKK(6,6)
DO 190 I = 1, 6

XKK(l) = 0.
DO 190 J = 1, 6
Q(IJ) = 0.
PHI(I,J) = 0.
A(I,J) = 0.
B(IJ) = 0.
H(I,J) = 0.
HI(I,J) =0.

HI(I,I) =1.

PKK(I,J) =0.
PKK(I,I) =1.

PKKMI(I,J)=0. 0
PKKM1(I,I) =1000000.0

190 CONTINUE
A(1,2) = 1.
A(3,4) = 1.
A(5,6) = 1.
H(1,1) =1.

H(2,3) =1.

H(3,5) =1

RETURN
END

C
C ****~****************************

C SUBROUTINE WHICH ALLOWS CHANGING OF W AND PKKM1 TO ALTER THE
C BEHAVIOR OF THE FILTER WITHOUT HAVING TO RE-COMPILE THE PROGRAM
C .. .. .
C

SUBROUTINE CHANGE(W ,PKKM1)
CHARACTER*1 ASK
DIMENSION W(6,6),PKKM1(6,6)
REAL*4 X

5 FORMAT(A1)

10 FORMAT( W(1,1) IS THIS VALUE:',F11.5)
WRITE (* 20)

20 FORMAT( ENTER (Y) TO CHANGE IT.')
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READ(*,5)ASK
X=W( 1, 1)
IF (ASK .EQ. 'Y' .OR. ASK .EQ. 'y') THEN

WRITE(*,40)
READ(*,50)X

ENDIF
DO 25 I=1,6

W(I,I)=X
25 CONTINUE

WRITE(* 30)PKKM1( 1,1)
30 FORMAT(' PKKM1(I,I) IS THIS VALUE:',F1O.4)

WRITE(*, 20)
REDf(*,5)ASK
X=PKKM1( 1,1)
IF (ASK .EQ. 'Y' .OR. ASK .EQ. 'y') THEN

WRITE(*,40)
READ(*,50)X

ENDIF
DO 35 I=1,6

PKKMI1( I, I)=X
35 CONTINUE
40 FORMAT(' ENTER A VALUE FOR ELEMENTS(I,I) WITH A DECIMAL POINT.')
50 FORMAT(G10.5)

RETURN
END
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APPENDIX B. INPUT DATA FILE FORMATTING PROGRAM

This program is designed to set up properly formatted files for use as input data by
the main program shown in Appendix A. It is an abbreviated version of a program
presented in [Ref. 181 which was developed to create usable data files.

The program first reads in the names of the desired input and output files and the
array numbers of interest. An option is given the user to remove unwanted headers from
the input data file, which some of the available files have, then the target of interest is

requested. Finally, the program writes to the output file only those data points that
meet the specified criteria or issues an error message if appropriate.

C
C PROGRAM TO READ IN RAW DATA FROM KEYPORT HYDROPHONE ARRAYS,
C SEGREGATE IT BY USER SPECIFIED MODE, AND RETAIN DATA ONLY
C FROM THE HYDROPHONES SELECTED. INPUT AND OUTPUT FILE NAMES
C ARE PROVIDED BY THE USER.
C
C

CHARACTER DO*2, DSNAME*13, OUTFIL*13
CHARACTER*3 ENDCHK
CHARACTER*1 C
INTEGER PC, ARRAY, NHEAD,A1,A2,NUM

WRITE(* *) ' ENTER THE NAME OF YOUR INPUT FILE:
READ(*, (A)') DSNAME
WRITE(*,*) 'INPUT NAME OF DESIRED OUTPUT FILE'
READ(*, (A)') OUTFIL
WRITE(*,*) 'ENTER NUMBERS OF ARRAYS TO BE PAIRED'
READ(*,*) A1,A2
OPEN( 1 ,FILE=DSNAME, STATUS=' OLD')
OPEN( 2,FILE=OUTFIL,STATUS='NEW')

WRITE(*,*)' DO YOU WANT TO REMOVE HEADERS? (Y or N)'
READ(*, (A)') C
IF(C. EQ. 'N') GOTO 12

11 READ( 1, 120)ENDCHK
WRITE(*,*) ENfCHK
IF(ENDCHK. NE. 'END') GOTO 11

12 CONTINUE

WRITE(*,*)' INPUT MODE TO BE KEPT?'
READ(*,*) NUM

10 READ(1,100,END=50)PC,DO,X,Y,Z,ARRAY,MODE
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IF(DO .EQ. 'EV')GOTO 20
IF(MODE .NE. NUN) GOTO 20
IF((ARRAY .NE. Al) .AND. (ARRAY .NE. A2)) GO TO 20
WRITE(2, 110)PC,X,Y,Z,ARRAY,MODE

20 CONTINUE
GOTO 10

WRITE(*,*)' THERE WAS AN ERROR IN THE FILE'
50 CONTINUE
100 FORIIAT(15,A2,lX,F7.l,2X,F7. l,2X,F7. l,30X,12,lX,12)
110 FORMAT(lX,15,2X,3F10. l,2X,I2,2X,I2)
120 FORMAT(31X,A3)

CLOSE (UNIT=1)
CLOSE( UNIT=2)
END
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